
465

0022-4715/03/0400-0465/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 111, Nos. 1/2, April 2003 (© 2003)

Variational Principle and Almost Quasilocality for
Renormalized Measures

Roberto Fernández,1 Arnaud Le Ny,2 and Frank Redig3

1 Laboratoire de mathématiques Raphaël Salem, Université de Rouen et CNRS, Faculté des
Sciences, 76821 Mont Saint-Aignan, France; e-mail: Roberto.Fernandez@univ-rouen.fr

2 Eurandom, L.G. 1.48, TU Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands;
e-mail: leny@eurandom.tue.nl

3 Faculteit Wiskunde en Informatica TU Eindhoven, Postbus 513, 5600 MB Eindhoven, The
Netherlands; e-mail: f.h.j.redig@TUE.nl

Received July 25, 2002; accepted September 19, 2002

We study the variational principle for some non-Gibbsian measures. We give
a necessary and sufficient condition for the validity of the implication ‘‘zero
relative entropy density implies common version of conditional probabilities’’
(so-called ‘‘second part of the variational principle’’). Applying this to noisy
decimations of the low-temperature phases of the Ising model, we obtain almost
sure quasilocality for these measures and the second part of the variational
principle. For the projection of low temperature Ising phases on a one-dimen-
sional layer, we also obtain the second part of the variational principle.

KEY WORDS: Renormalization group; almost quasilocality; variational prin-
ciple.

1. INTRODUCTION

Non-Gibbsian measures were initially detected as ‘‘pathologies’’ of renor-
malization group transformations of low-temperature Gibbs measures. (1, 2)

Initial efforts were directed towards the construction of a sufficiently rich
catalogue of examples and mathematical mechanisms leading to non-
Gibbsianness. (3) Afterwards, Dobrushin lanced a program of ‘‘restoration
of Gibbsianness’’ mainly consisting in two parts: (i) determination of
weaker notions of Gibbsianness which are preserved by the transforma-
tions of interest, and (ii) extension of the thermodynamic formalism to



these broader class of measures. The first issue motivated the notions
of weak Gibbsianness and almost quasilocality. (4–10) A measure is called
almost quasilocal if it admits a version of its conditional probabilities
which is continuous on a set of measure one. A measure is called weakly
Gibbs if there exists a potential which is (absolutely) convergent such that
the conditional probabilities can be written in ‘‘Gibbsian form’’ on a set of
measure one. If one does not insist on absolute convergence and translation
invariance of the potential, then almost quasilocal implies weakly Gibbs,
and the converse is not true, see refs. 6 and 9.

Most efforts in the realization of the Dobrushin program have been
directed towards showing that transformations of low-temperature Gibbs
measures are weakly Gibbs, see refs. 4, 5, and 9. However, it is not clear at
this point whether ‘‘weakly Gibbsian’’ measures do not constitute a class
that is too general in order to represent a reasonable generalization of the
classical Gibbs measures. One test a possible generalization of Gibbs mea-
sures should pass is the existence of a reasonable ‘‘thermodynamic for-
malism.’’ For weakly Gibbsian measures, e.g., the notion of ‘‘physical
equivalence’’—two interactions sharing a phase have the same set of Gibbs
measures—has not been proved. Neither any general statement on the
existence of thermodynamic quantities such as pressure, free energy has
been obtained in the context of weakly Gibbsian measures. In fact, recent
counterexamples in the context of disordered spin systems show that two
weakly Gibbsian measures with different interactions (i.e., with no
common version of their conditional probabilities) can have the same free
energy (relative entropy density zero). This shows that in complete general-
ity, a reasonable thermodynamic formalism for weakly Gibbsian measures
cannot be expected. (11)

In this paper we show that in the context of FKG, ‘‘almost quasilocal
measures’’ admit a reasonable thermodynamic formalism. Concretely, for
the decimation of the low-temperature Ising model, we first remark exis-
tence of relative entropy density (as a corollary of the recent large deviation
formalism of ref. 12), and next we show that if a measure has zero relative
entropy density w.r.t. the decimation of the plus phase of the Ising model
then it has the same conditional probabilities. In applying this to the
decimation of the minus phase, we obtain that the set of points of discon-
tinuity of the conditional probabilities of the decimated Ising model is of
measure zero, thereby solving an open problem in ref. 13. More general
transformations can be considered, as long as we do not leave the FKG
context. A further criterion for ‘‘zero relative entropy density’’ implies
‘‘common version of conditional probabilities’’ is obtained, which is then
applied to the projection of the d-dimensional Ising model on a one-
dimensional layer.
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The main message of this paper is that within the context of ‘‘almost
quasilocality’’ a generalization of the thermodynamic formalism is possible.
In particular, regularity properties of the specification rather than ‘‘almost
sure existence of Hamiltonians’’ can be a key to a physically acceptable
generalization of Gibbs measures giving naturally important aspects of the
variational principle. Since we use the FKG property, our proofs are short
and do not rely on laborious techniques such as cluster expansion, multi-
scale analysis. However, the results in this particular context are stronger
than what can be obtained by the former techniques, (4, 9, 10, 14) and hold up
to the critical point.

2. PRELIMINARIES

2.1. Configuration Space

We work with Ising spins on the lattice Zd, i.e., configurations are
elements of the product space W={ − 1, 1}Z

d
. The set of finite subsets of Zd

is denoted by S and for s ¥ W, L ¥ S, sL denotes the restriction of s to L.
The cube [ − n, n]d 5 Zd is denoted by Ln. For A … Zd, FA denotes the
sigma field generated by the mappings s Q s(x), x ¥ A. FZ

d is abbreviated
by F and is the Borel sigma field on W.

A function f: W Q R is local if it is FL measurable for some L ¥ S.
The set of local functions is denoted by L. L is a uniformly dense
subalgebra of C(W), the set of all continuous functions.

Translations yx are defined on W via yxs(y)=s(y+x), on functions
via yx f(s)=f(yxs) and on probability measures m on (W, F) via
> yx f dm=> fd(yxm). A probability measure m on (W, F) is translation
invariant if for all x ¥ Zd, yxm=m. The set of all translation invariant
probability measures is denoted by M+

1, inv.
For later purposes we need the notion of directional continuity. For

h ¥ W, a function f: W Q R is called continuous in the direction h if for any
s ¥ W:

lim
L ‘ Z

d
f(sLhL

c)=f(s). (2.1)

If f is continuous, then f is continuous in every direction. The converse is
not true, since continuity requires continuity in every direction, uniformly
in the direction. The set of all functions which are continuous in the direc-
tion h is denoted by Ch(W). When h is the plus (resp. minus) configuration,
i.e., h(x)=+1 (resp. − 1) -x ¥ Zd, continuity in the direction h is called
right-continuity (resp. left-continuity).
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On W we have the natural order g [ z if for all x ¥ Zd, g(x) [ z(x).
A function is called monotone if it preserves the order, i.e., if g [ z implies
f(g) [ f(z).

2.2. Specification

Definition 2.2. A specification on (W, F) is a family {cL, L ¥ S} of
stochastic kernels such that

1. For every A ¥ F, cL(A | · ) is a FL
c-measurable function.

2. For every w ¥ W, cL( · | w) is a probability measure on (W, F).

3. The kernels are proper, i.e., for every B ¥ FL
c:

cL(B | w)=1B(w)

4. The kernels are consistent, i.e., for L … LŒ:

cLŒcL=cLŒ

i.e.,

cLŒ(B | g)=F cL(B | w) cLŒ(dw | g), -B ¥ F, g ¥ W.

For a specification c and f a bounded measurable function, we denote

cL(f)(w)=F cL(ds | w) f(sLwL
c)

Definition 2.3. A probability measure m on (W, F) is called consis-
tent with a specification c (notation m ¥ G(c)) if for any f bounded mea-
surable:

F cL(f) dm=F fdm

If m ¥ G(c), then the specification defines a version of the conditional
probabilities of m ,i.e., m-a.s.

cL(A | · )=Em(1A | FL
c)

We write Ginv(c)=G(c) 5 M+
1, inv for the translation invariant elements of

G(c).
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Definition 2.4. A specification is called

1. Quasilocal (or Feller) if for any f ¥ C(W), L ¥ S, cL(f) ¥ C(W).

2. Quasilocal in the direction h if for any f ¥ C(W), L ¥ S,
cL(f) ¥ Ch(W).

3. Monotone if for every f monotone, and L ¥ S, cL(f) is mono-
tone.

4. Translation invariant if for any L ¥ S, w ¥ W, A ¥ F:

cL(A | w)=cL+x(yxA | yx(w))

Important examples of quasilocal specifications are given by so-called
Gibbs specifications, i.e., where

cL(s | w)=
exp(−Hw

L (s))
Zw

L

with

Hw
L (s)= C

A 5 L ] ”

U(A, sLwL
c)

is the Hamiltonian corresponding to a translation invariant absolutely
summable potential U ¥ B1. This means that U(A, · ) are FA measurable
functions, that U(A+x, · )=yxU(A, · ) and that

||U||1= C
A ¦ 0

sup
s

|U(A, s)| < .

The measures consistent with such Gibbs specifications are the usual Gibbs
measures of equilibrium statistical mechanics.

For a general specification we denote by Wc the set of its points of
continuity, i.e., the set of those s ¥ W such that for all cylinder A ¥ F,
L ¥ S the map w W cL(A | w) is continuous at s. For quasilocal specifica-
tions, we have of course that Wc=W. For a specification which is quasilo-
cal in some direction h, the set Wc is non-empty, see e.g., ref. 7.

Definition 2.5. A probability measure m is called almost quasilocal
if there exists a specification c such that m ¥ G(c) and m(Wc)=1.
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2.3. Relative Entropy

For m, n ¥ M+
1, inv we denote

HL(m | n)= C
sL ¥ WL

m(sL) log
m(sL)
n(sL)

with the convention HL=. if mL is not absolutely continuous with respect
to nL. We denote

h(m | n)=lim
n ‘ .

1
|Ln |

HLn
(m | n) (2.6)

the relative entropy density of m w.r.t. n, provided the limit exists. The
existence of the limit in (2.6) is a non-trivial problem, and besides the
context of Gibbs measures with a translation invariant B1-potential, and
the context of asymptotically decoupled measures in ref. 12, there is no
general existence result.

2.4. Variational Principle

Let c be a translation invariant specification, n ¥ G(c) a translation
invariant probability measure and Mc a subset of M+

1, inv.

Definition 2.7. We say that the variational principle holds for
(c, Mc, n) if

0. For any m ¥ Mc, h(m | n) exists.

1. m ¥ Ginv(c) 5 Mc implies h(m | n)=0.

2. If m ¥ Mc is such that h(m | n)=0 then m ¥ Ginv(c).

Point 1 of the definition is usually called ‘‘first part of the variational
principle’’ and corresponds physically speaking to the fact that the Gibbs
measures minimize the free energy. Point 2 is called the ‘‘second part of the
variational principle’’ and corresponds to the fact that a minimizer of the
free energy is a Gibbs measure. In the context of Gibbs measures with a
translation invariant B1-potential, the variational principle holds for every
n ¥ Ginv(c) with Mc=M+

1, inv. In more general contexts, Mc will be a set of
measures concentrating on configurations which behave properly. It is clear
that without any locality requirements on the specification, there is no hope
to have a variational principle. E.g., in ref. 15 an example of a specification
is given such that every Bernoulli measure np ¥ Ginv(c), and hence (1) is not
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satisfied. On the other hand the examples of transformations of low-tem-
perature Gibbs measures show that some extension of the class of specifi-
cations for which the variational principle holds is needed, since for these
measures we expect a reasonable thermodynamic formalism.

3. DECIMATION OF THE ISING MODEL

For L ¥ S, g ¥ W, the Hamiltonian of the Ising model in L with
boundary condition g outside L is given by

Hg
L(s)=−b C

x, y ¥ L, |x − y|=1
s(x) s(y) − b C

x ¥ L, y ¨ L, |x − y|=1
g(y) s(x).

The corresponding specification is given by

cb
L(s | g)=

exp(−Hw
L (s))

Zw
L

We consider d \ 2 and b > bc such that |G(cb)| > 1. We call m+ (m−) the
plus (minus) phase, i.e., the weak limits of cb

L( · |+) (cb
L( · | −)) as L ‘ Zd.

For b ¥ Z+ we denote by Tb the decimation defined by

Tbs(x)=s(bx)

and n+ (n−) denotes the image measure of m+ (m−) under Tb. In ref. 13 the
following results are proved:

Proposition 3.1. For all b > bc,

1. n+, n− are not quasilocal, i.e., there does not exist a quasilocal
specification c such that G(c) 5 {n+, n−} ] ”.

2. There exists a right continuous monotone specification c+ with
n+ ¥ G(c+), and a left continuous monotone specification c− with n− ¥

G(c−). Moreover, for any f monotone, c+
L (f) \ c−

L (f).

3. Both specifications have the same set of points of continuity, i.e.,
Wc

+=Wc
− :=W±

4. n− ¥ G(c+) implies n+(W± )=1 (i.e., n+ is almost quasilocal), and
n+ ¥ G(c−) implies n−(W± )=1 (i.e., n− is almost quasilocal).

We can now state our first result.
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Theorem 3.2. For all b > bc,

1. For every m ¥ M+
1, inv, h(m | n+) exists and in particular

h(n− | n+)=0

2. n− ¥ Ginv(c+).

3. n+ is almost quasilocal.

4. If h(m | n+)=0 and m(W± )=1, then m ¥ Ginv(c+), and hence m is
almost quasilocal.

The same results hold if + is replaced by −.

Remark 3.3. Statement 4 of the theorem has to be interpreted in the
spirit of variational principle for unbounded spin systems: if a measure has
zero relative entropy density w.r.t. to the ‘‘Gibbs’’ measure and concentra-
tes on a set of ‘‘good configurations,’’ then it is also ‘‘Gibbs’’ (i.e., consis-
tent with the same c).

For the proof of the theorem, we first state a general proposition.

Proposition 3.4. Let c be a specification that is quasilocal in the
direction h ¥ W and n ¥ Ginv(c). For each L ¥ S, M ¥ N, L … LM and each
local f, let cM, h

L (f) denote the function w Q cL(f | wLM
hZ

d
0LM

). Then, if
m ¥ M+

1, inv is such that h(m | n)=0, then the following two statements are
equivalent

1. m ¥ Ginv(c)

2.

n 5dmLM 0L

dnLM 0L

(cM, h
L (f) − cL(f))6Ł

M Q .
0 (3.5)

for all L ¥ S and f ¥ L.

The right-hand-side of (3.1) shows that consistency requires the con-
centration properties of dmLM 0L/dnLM 0L to beat asymptotic divergences due
to the lack of continuity of cL. This imposes some conditions on m which
are reminiscent of what happens for unbounded spin-systems. The analogy
between unbounded spin systems and non-Gibbsian measures is an early
remark from Dobrushin. Within approaches based on potentials (weak
Gibbsianness) these conditions are defined and handled by cluster-expan-
sion methods. (9, 14) As we discuss below, in favorable cases monotonicity
arguments can be used instead.
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Proof. The hypothesis h(m | n)=0 implies that for n sufficiently large
the FLn

-measurable function gLn
=dmLn

/dnLn
exists. For f local and L ¥ S,

pick M such that LM ‡ L and gLM
exist and write

m(cL f − f)=AM+BM+CM (3.6)

with

AM=m[cL(f) − cM, h
L (f)], BM=n[(gLM

− gLM 0L) f] (3.7)

and CM is the right-hand side in (3.5). We shall prove that AM and BM

converge to zero as M tends to infinity.
Indeed, limM Q . AM=0 follows by dominated convergence, because c

is quasilocal in the direction h and |cM
L (f)| [ ||f||..

On the other hand, Csiszár’s inequality, (16)

HD(m|n) − HDŒ(m|n) \ 1
2
5F

W

|gD(w) − gDŒ(w)| dn(w)6
2

.

valid for DŒ … D ¥ S, implies that

|BM | [ `2 ||f||. [HD(m | n) − HD0L(m | n)]

for any D ‡ LM. But the hypothesis h(m | n)=0 implies that the difference
in entropies in the right-hand side tends to zero as D ‘ Zd, as shown in
ref. 15 or ref. 12. Hence B(M) Q 0 as M goes to infinity. L

Proof of Theorem 3.2.

1. The first assertion follows from the results in ref. 12. Indeed, the
decimation of an asymptotically decoupled measure is asymptotically
decoupled. More precisely, since n+ is the decimation of the Ising model we
automatically have the inequalities

e−cnn+(A) n+(B) [ n+(A 5 B) [ e+cnn+(A) n+(B) (3.8)

for all A ¥ FLn
, B ¥ FL

c
n
, and where cn=O(nd − 1). This inequality follows

immediately from the inequality

e−on [
m+(A | g)

m+(A)
[ eon (3.9)

with on=O(nd − 1), uniformly in the boundary condition g ¥ { − 1, 1}L
c
n.
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Pfister in ref. 12 shows that (3.8) implies the existence of the relative
entropy density h(m | n+) for any m ¥ M+

1, inv. Zero relative entropy
h(n− | n+)=0 follows from the locality of the transformation Tb (see ref. 3):

h(n− | n+)=h(Tbm− | Tbm+) [ h(m− | m+)=0.

2. It is enough to verify the right-hand side of (3.5) for monotone
local functions f since linear combinations of these are uniformly dense in
the set of continuous functions. Until the end of the proof of this theorem,
we write the reference specification c instead of c+.

By Proposition 3.4 we only have to show that

CM=n+[gLM 0L (cM, +
L (f) − cL(f))] Ł

M Q .
0, (3.10)

where gD=dn−
D/dn+

D for D … Zd. We first point out that

CM \ 0 (3.11)

because c is monotonicity preserving, while

n+(gLM 0L cM, +
L (f))=n−(cM, +

L (f)) (3.12)

because cM, +
L f is FLM 0L-measurable. On the other hand,

n+(gLM 0L cL(f))=n+[gLM 0L n+(cL(f) | FLM 0L)] (3.13)

and thus by monotonicity,

n+(gLM 0L cL(f)) \ n+[gLM 0L n−(cL(f) | FLM 0L)]=n−(cL(f)). (3.14)

where the last equality follows from FLM 0L-measurability of
n−(cL(f) | FLM 0L)( · ). From (3.11), (3.12), and (3.14) we conclude

0 [ CM [ n−(|cM, +
L (f) − cL(f)|)

and hence (3.10) follows from the right-continuity of c and dominated
convergence.

3. Follows from Assertion 4 of Proposition 3.1
4. We apply Proposition 3.4 again with f a monotone local function.

By monotonicity

0 [ n+[gLM 0L (cM, +
L (f) − cL(f))]

[ n+[gLM 0L (cM, +
L (f) − cM, −

L (f))]

=m(cM, +
L (f) − cM, −

L (f))
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where gD now denotes the Radon–Nikodym density of mD with respect
to n+

D , and the last equality follows from the FLM 0L-measurability of
cM, +

L (f) − cM, −
L (f). The last line tends to zero with M by dominated con-

vergence, because m(W± )=1.

Remark 3.15. A straightforward generalization of Theorem 3.2
consists in considering a noisy decimation, i.e., the transformation is given
by

Ts(x)=s(bx)(−1)Ex

where Ex are i.i.d. Bernoulli and independent of s, with P(Ex=1)=p. This
means that the transformed spin at site x is with probability (1 − p) equal
to the spin at site bx and ‘‘an error’’ is made with probability p. The case
b=1 corresponds to the single site Kadanoff transformation.

4. PROJECTION ON A LAYER

Theorem 3.2 does not apply to Schonmann’s example—the projection
of the two-dimensional low temperature plus phase of the Ising model on a
line. More precisely, consider the restriction

T: W Q { − 1, +1}Z : Ts(x)=s(x, 0,..., 0)

Denote n+
b , resp. n−

b the induced measure on { − 1, 1}Z by applying T to the
low temperature plus phase (resp. minus phase) of the Ising model. It is
known that n+

b is not a Gibbs measure, and from ref. 17 one can conclude
that if h(n− | n+) exists then it is not zero. The existence of h(m | n+) for a
general m ¥ M+

1, inv cannot be derived from ref. 12 since the projection has
not been shown to be asymptotically decoupled. The existence of h(m | n+)
for m ¥ M+

1, inv concentrating on a set of ‘‘good configurations’’ (with n+

measure one) has been proved in ref. 9. However, the assertions of ref. 13
stated before Theorem 3.2 remain true for n+

b , n−
b . Here we prove

Theorem 4.1. If b > bc is sufficiently large, then we have the
implication h(m | n+

b )=0 implies m ¥ Ginv(c+).

For the proof, we need some more notation.
For L a fixed finite volume a direction h ¥ W, and f a local function,

put

dh
L, M(f)=|cM, h

L (f) − cL(f)| (4.2)
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and introduce for E > 0 the sets

A(h, L, f, E, M)={g ¥ W : dh
L, M(f) > E}. (4.3)

If c is continuous in the direction h, then dh
L, M tends to zero as M tends to

infinity, and hence for any probability measure m, m[A(h, L, f, E, M)]
tends to zero as M tends to infinity.

Definition 4.4. Let aM ‘ . be an increasing sequence of positive
numbers and m ¥ M+

1, inv . We say that the specification c admits aM as a
m-rate of continuity in the direction h if for all E > 0, for all f local, and for
all L:

lim sup
M ‘ .

1
aM

log m[A(h, L, f, E, M)] < 0. (4.5)

The following proposition shows that for a given rate of continuity,
the condition of Proposition 3.4 will be satisfied if the relative entropies
tend to zero at the same rate.

Proposition 4.6. Let n ¥ Ginv(c) and suppose that aM is a n-rate of
h-continuity. Suppose furthermore that m ¥ M+

1, inv is such that

lim
M ‘ .

1
aM

HLM
(m | n)=0. (4.7)

Then m ¥ Ginv(c).

Proof. Let us fix a local function f, a finite set L and some E > 0.
We have

n 5dmLM 0L

dnLM 0L

(cM, h
L (f) − cL(f))6 [ E+2 ||f||. m̃M(AM

E ) (4.8)

where AM
E denotes the set (4.3) and we abbreviated

m̃M(AM
E )=n 1dmLM 0L

dnLM 0L

1AM
E

2 . (4.9)

By (4.5) there exists c > 0 such that for M large enough,

n(AM
E ) [ e−caM, (4.10)
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hence, for 0 < d < c, and we can write the following inequalities:

m̃M(AM
E ) [

1
aM d

log F exp(daM 1AM
E

) dn+
1

aM d
H(m̃M | n)

[
1

aM d
log(1+eaM d n(AM

E ))+
1

aM d
H(m̃M | n)

[
1

aM d
eaM(d − c)+

1
aM d

H(m̃M | n). (4.11)

By (4.7), the last line tends to zero as M Q .. By (4.8), and the fact that
E > 0 is arbitrary, we conclude that condition (3.5) of proposition (3.4) is
satisfied, which implies that m ¥ G(c). L

The result of Theorem 4.1 now follows immediately from the estimates
on the Kozlov potential in ref. 9, Eq. (3.23) which imply that c+ admits
aM=M as n+

b -rate of right-continuity for b large enough.

Remark 4.12. For Proposition 4.6 no monotonicity is needed, but
in order to verify the rate of h-continuity one needs some control on a
potential for which the measure is weakly Gibbs. For one dimensional
projections of low temperature phases of models in the realm of Pirogov–
Sinai theory (e.g., Potts model, Ising antiferromagnet) it can be verified
that aM=M is a rate of h-continuity, where h is a suitably chosen vacuum
(see ref. 8).
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